Machine learning to improve the impact assessment of micropollutants release from WWTP

R. Servien joint work with C. Leenknecht, E. Latrille, L. Mamy, P. Benoit, A. Helias and D. Patureau

UR 0050 LBE

INRA

• • • • • • • • • • •

Modeling Application on WWTP Conclusion/Perspectives Aemig, Hélias and Patureau (2021)

2/17

Modeling Application on WWTP Conclusion/Perspectives Aemig, Hélias and Patureau (2021) Bibliography

Calculation

Aemig, Hélias and Patureau (2021) Bibliography

Characterization factor

DALY = Disability Adjusted Life Years = number of life years « lost » because of illness, handicap or death

PDF.m³.j = Potentially Disappeared Fraction x cubic meter x day = fraction of species potentially disappeared integrated to volume and time

R. Servien (LBE - INRAe)

Machine learning models to improve impact assessment

4/17

Modeling Application on WWTP Conclusion/Perspectives Aemig, Hélias and Patureau (2021) Bibliography

Available data and selecting

Lack of characterization factors (especially for pharmaceuticals)

э

Modeling Application on WWTP Conclusion/Perspectives Aemig, Hélias and Patureau (2021) Bibliography

Conclusion

- Conclusions
 - Toxic for the aquatic environment \neq toxic for human health
 - High mass \neq high impact
 - Low mass + high CF \rightarrow high impact
- Limitations
 - Lack of data (in particular for pharmaceuticals)
 - Incomplete study of impacts (only 1/3 of selected micropollutants)
 - Making experiments to obtain these CF is time-consuming and expensive
- Ideas
 - DB TyPol contains data (molecular descriptors) on this kind of compounds
 - Predict missing CF using modelisation and molecular descriptors (that are easily obtainable for a new compound)

Modeling Application on WWTP Conclusion/Perspectives Aemig, Hélias and Patureau (2021) Bibliography

Bibliography

QSAR approach

- Danish QSAR database (DTU, 2015), ECOSAR (Mayo-Bean et al., 2011), VEGA 30 (Benfenati et al., 2013)
- Used to obtain LC50 data
- Remains mostly linear models
- Machine learning approaches
 - Hou, ..., Jolliet, Xu (2020a, 2020b)
 - Based on more complex data not only molecular descriptors to predict mid-points (not CF)
- Goal : Test different modeling methods based on molecular descriptors to predict CFs (one for CF_{ET} and one for CF_{HT}). Error of 1 log accepted.

- Linear model : Partial least squares (PLS)
- Machine learning (SVM and RF)
- Cluster-then-predict approaches
 - Clustering used on molecular descriptors
 - PLS, SVM and RF applied on each cluster separately

< 🗇 🕨 < 🖃 >

Methods Validation

Comparison procedure

- TyPol : 529 molecules, Usetox \sim 3000, 269 in common (high impact).
- Train and test
- Results for CF_{HT} for cluster 1

• Validation of the prediction models (<1 log).

Computation of missing CFs Impact on the aquatic environment Impact on human health

Computation of missing CFs

- Calculation of molecular descriptors for molecules without CF
- Prediction of new CFs (HT and ET) using previous models (<1 sec)
- Number of micropollutants taken into account nearly doubled
- Now 153 micropollutants on 261
- Update of the analysis of the potential impacts on human health and aquatic environment in continental freshwater

Background Modeling

wodeling

Application on WWTP

Conclusion/Perspectives

Computation of missing CFs Impact on the aquatic environment Impact on human health

æ

<ロト < 回 > < 回 > < 回 > .

Computation of missing CFs Impact on the aquatic environment Impact on human health

Impact of compounds of the new study

- Conclusions of Aemig et al. still holds
 - 90 % of the overall impact still driven by 2 molecules with high CF
 - In 10 most impacting molecules, three are new
 - the total impact increased of only 4%

Modeling

Application on WWTP

Conclusion/Perspectives

Computation of missing CFs Impact on the aquatic environment Impact on human health

R. Servien (LBE - INRAe)

Machine learning models to improve impact assessment

13/17

Computation of missing CFs Impact on the aquatic environment Impact on human health

Impact of compounds of the new study

- Modified conclusions
 - 94 % of the total impact is induced by 26 (prev. 8) molecules and 41 % (prev. 4%) of the total mass
 - Total impact nearly doubled
 - Benzo(b)fluoranthene and Valsartan = same impact (14%) but not same explanation (CF/mass)

Conclusion

- CF (for human health and ecotoxicological impacts) were predicted using molecular descriptors
- Predictions using machine learning were good
- This methodology was then used to derive missing CFs
- It was used to complement study of impact assessment of WWTP
 - No change for aquatic environment impact
 - Important changes for human health impact
- Could be used for priorisation of compounds for example
 - Cypermethrin for HT
 - More complex for ET

Perspectives

- Study still incomplete ! (153/261)
- Impact assessment only limited by the mass estimation
 - Estimation of the missing masses using available data (and bootstrap)
 - Completion of the study for all the micropollutants
 - With confidence intervals
- Submitted preprints
 - Models https://www.biorxiv.org/content/10. 1101/2021.07.20.453034
 - Applications https:

//hal.archives-ouvertes.fr/hal-03346134

< ロ > < 同 > < 回 > < 回 >

Thank you for your attention !

< 100 P

4.10