

20/10/2021

Water-Energy-Food (WEF) Nexus?

- Systems approach •
- **Sustainable solutions**
- **Efficient management**
- Emphasis on interlinkage, synergies and trade-off among FEW sectors

Objectives

- ENLARGE project objective: to assess the potential of the circular economy in urban environment
- Primary objective of the project : to create a model to evaluate different configurations to answer the principle question of recycling and reuse
- Principle question: Is there any lack of resources to achieve the amount of production required to feed the community?
- Modeling objectives:

20/10/2021

- ✓ To reproduce the existing framework: flow and stocks dynamic system
- ✓ To grow enough crops to feed a community
- Recycling its gray water, urine, harvested precipitation and organic wastes
- Test on Brazilian case studies

Objective of the future thesis (Ecofilae-INRAE) : Improving the flexibility, interactivity and scalability of the model, which is required by the complex nature of the FEW nexus in various case study.

Information on the approach

Results

	Vitoria		Florianópolis		Fortaleza			
Projet	Agricultores Urbanos		Baldinhos Revolution					
Flush scenario	With toilet flush	Without toilet flush	With toilet flush	Without toilet flush	With toilet flush		Without toilet flush	
Projet	Average climate		Average climate		Average climate	Dry climate	Average climate	Dry climate
Crop water requirements for maximum productivity (m3)	420	420	216	216	690	1650	690	1650
Maximum production $(T/ha/year)$	22,182	22,182	30,475	30,475	15,94	13,46	15,94	13,46
Cultivated area to feed a community of 100 people $(ha)^\ast$	0.7	0.7	0.48	0.48	0.92	1.1	0.92	1.1
Applied irrigation water (m^3)	367	322	216	216	627	613	406	424
Water Balance (m^3)	-53	-98	0	0	-62	-1036	-284	-1226
from greywater (%)	53%	65.8%	7%	65.2%	51.3%	50.4%	51%	58.7%
from Rainfall (%)	27%	32.9%	10%	34.7%	35.7%	36%	47.6%	41.2%
from yellowWater (%)	20%	1.3%	81%	3.6%	13%	13.6%	1.4%	1.3%
Overflow (m^3)	1547	1487	1896	1715	1215	1030	1165	1037
Production shortfall	-	-	0	0	-	-	-	-

Table 3: The results of the first scenario simulation within the Optirrig/OptiMuses linkage

PhD propositions

The general idea is to create a core that will do the super-simple, free access, basic scenario (we can even consider it as a learning tool to raise awareness among the different stakeholder groups) and then a more detailed, data-driven second level loop to do advanced studies on the project.

20/10/2021

Structure analysis

- Structure verification test
- Boundary adequacy test
- Parameter verification test
- Dimensional consistency test
- Extreme conditions test

Behavior analysis

Label of the input factors	Probability distribution	Unit	Minimum	Mean	Maximum	Standard deviation
Rain - Dry scenario	Normal	m^3/day	0	2.92	128.4	10.12
Rain- Average scenario	Normal	m^3/day	0	3.51	98.4	10.2
Yellow water production	Normal	$m^3/pers/day$	0.00085	0.0047	0.00865	0.0054
Grey water production	Normal	$m^3/pers/day$	0.032	0.05	0.073	0.028991

Optirrig irrigation functionality

Blue : Fortaleza – Average climate condition Black: Fortaleza – Dry climate condition Pink: Florianopolis – Average climate condition Grey: Vitoria – Average climate condition

Limits of the approach

- There is no model that is totally fixed to our objective
- There is always a detail that may be forgotten as we are not the model developer, therefore, it required more attentions
- Having the right of the source code of the selected models
- Model updating
- Cooperate with different teams within certain limits