INRAO

> Eléments de comparaison des performances des principaux procédés de traitement vis à vis des pathogènes

Rémi Lombard-Latune, Sophie Guillaume / UR REVERSAAL (Lyon)

Microorganismes pathogènes et eaux usées

	Virus	Bactéries	Protozoaires (oocystes)	Helminthes (æufs)
	Covid-19 (CDC, 2020)	Escherichia coli (Wiki Commons)	Giardia (Erlandsen, 2017)	Schistosoma mansoni (Reynolds, 2012)
Taille μm	0,01 – 0,35	0,2 – 10	3 – 30 (2 – 15)	> 1000 (40)
Concentrations dans les EUB (UFC 100mL)	100 – 10 ⁵	10³ - 10 ⁹	10 - 10 ⁵	100 - 10 ⁴
Dose minimale infectieuse	100 à 10 ³	100 à 10 ⁶	10 à 100	1 à 10
Pathologies	Covid, Hépatites	Diarrhée, Typhoïde, Cholera	Diarrhée, Cryptosporidiose, Toxoplasmose	Ascariose, Tenia

EUB : eaux usées brutes

Sources: Asano et al., 1998; US National Research Council, 2004; Beaupoil et al., 2010

Notion d'indicateur

- Le suivi des pathogènes est un problème complexe : nombre très important de souches différentes, mesures complexes et quantité très variables
- → Passage par des indicateurs plus facilement mesurables
- au moins aussi résistants aux traitements que les pathogènes qu'ils représentent
 - présents en quantité suffisante dans les EU (> 10⁴ unité/L)
 - concentrations stables dans le temps

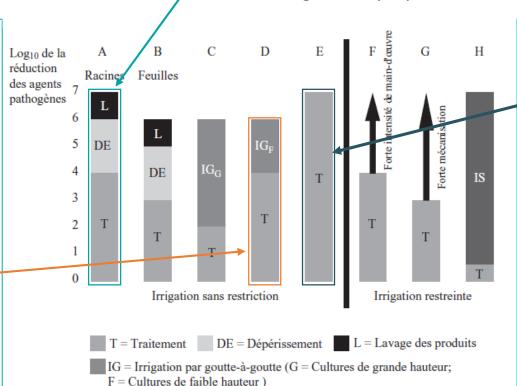
Indicateur de présence	?	
Indicateur de l'efficacité de traitement	Pas d'indicateur universel → plusieurs indicateurs combinés : <u>Bactéries</u> : entérocoques fécaux, <i>E.coli</i> <u>Virus</u> : phages ARN-spécifiques <u>Parasites</u> : spores de bactéries anaérobies sulfito-réductrices	
Indicateur de bon fonctionnement	<i>E.Coli</i> (+ tubidité)	

> Pathogènes et réutilisation des eaux usées

Directive OMS REUSE agricole (2012)

Analyse des risques (QMRA + simulation Monte Carlo + DALY)

→ Abattement total de 7 log, décomposé : 4 log par le traitement

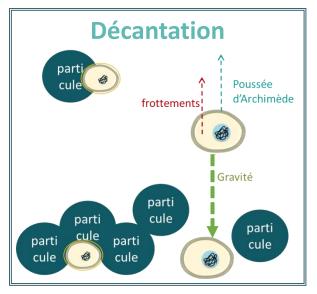

IS = Irrigation souterraine

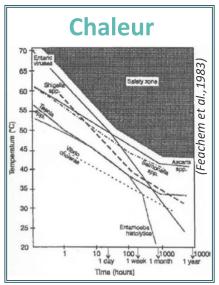
2 log décroissance liée à l'activité agricole

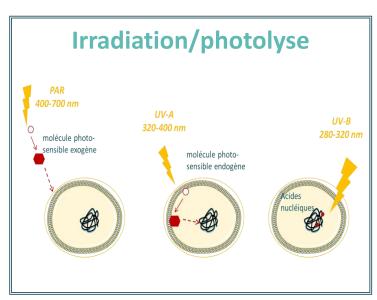
1 log lié à la préparation domestique

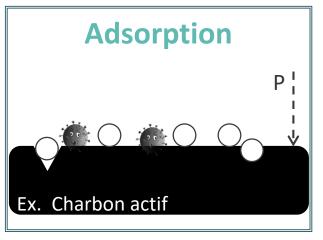
Approche par « barrières »

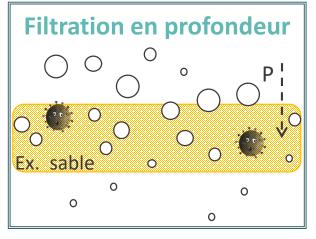
- → Mobilisation des différents maillons de la filière REUSE
- → Ex : Fr Qualité A : [E.coli] < 250cfu
- → France, Portugal,

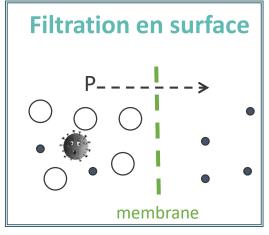


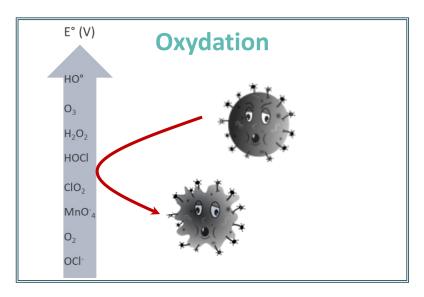

Approche « tout traitement »

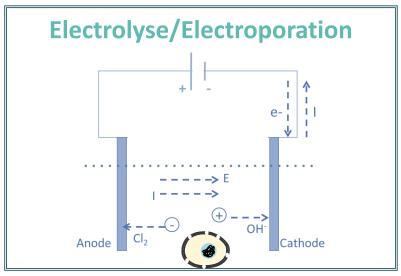

- → Abattement total de 7 log par le traitement
- → Qualité A : [E.coli] < 10 à 0,1cfu
- → US, Australie, UE

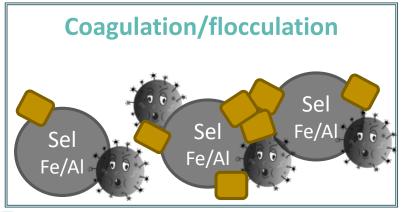

> Processus d'abattement des pathogènes

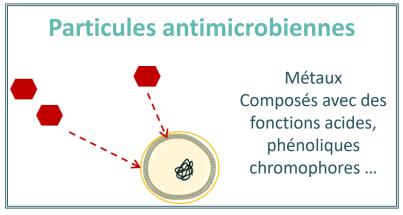

Processus physiques



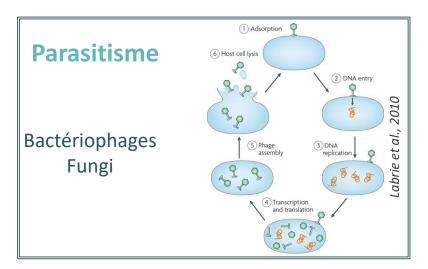


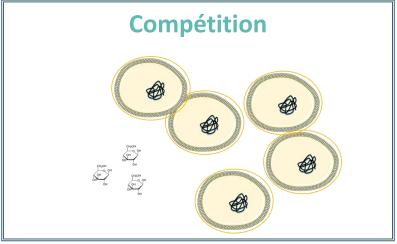


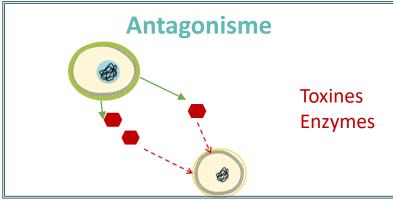


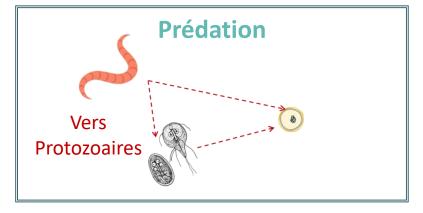

Processus d'abattement des pathogènes

Processus chimiques

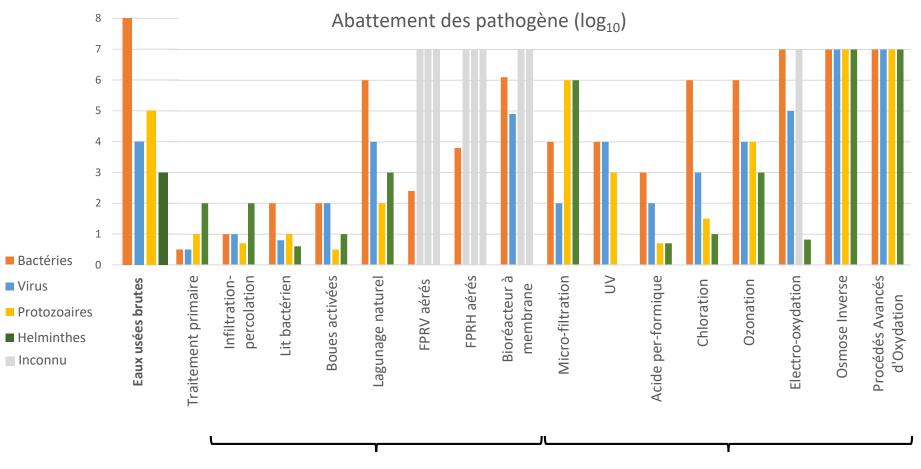


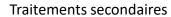



INRAe


Processus d'abattement des pathogènes

Processus biologiques





INRAe

Comparaison des performances des principaux procédés de traitement sur les pathogènes

Traitements tertiaires

> Conclusions

- Indicateurs de suivis des pathogènes : présence / efficacité du traitement / routine
- Quelle gestion du risque mettre en place?
 - Approche par le traitement (« intensive ») → bilans économique et environnemental ?
 - Approche par barrières → Quelle est l'efficacité des barrières ? Comment répartir la gestion du risque sur la filière ?
- Procédés de traitement : hétérogénéité des performances selon le type de pathogènes, mais également hétérogénéité des données (et des connaissances ?)
 - → Nécessité de mieux caractériser les performance vis-à-vis des 4 types de pathogènes
 - → De nombreuses solutions existent, mais nécessité d'associer des procédés en recherchant une complémentarité des traitements (dominante physique pour les parasites, chimique/UV pour virus et bactéries)

Merci pour votre attention!